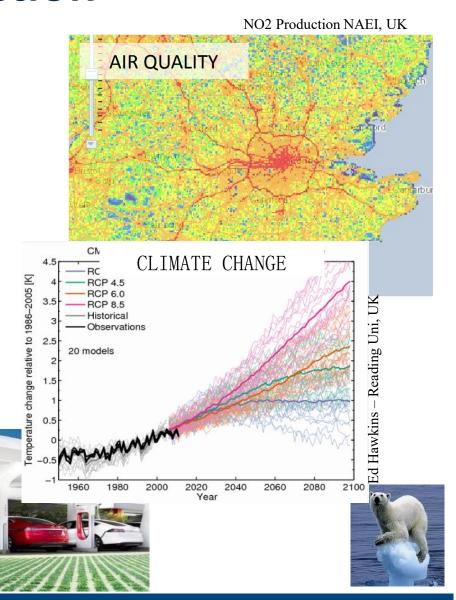


Alternative fuels and the future of road tunnels and road tunnel design

Gary Clark

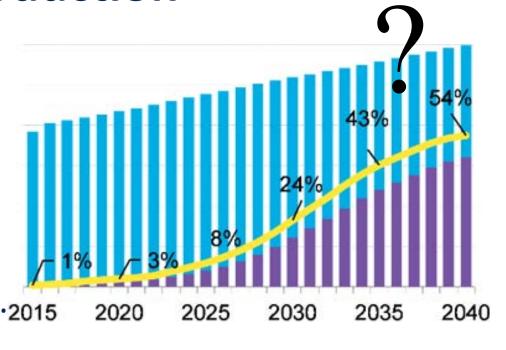
Contents



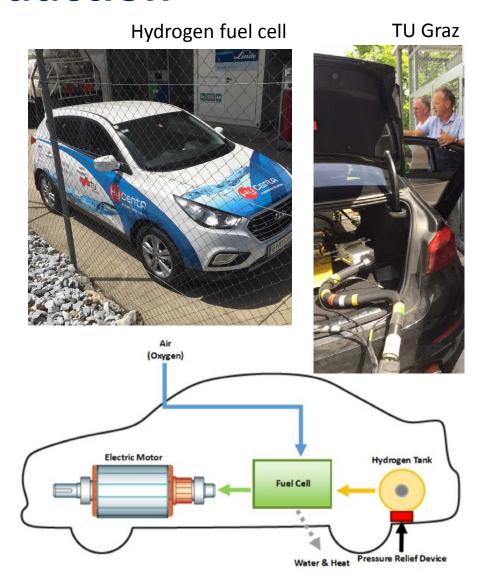
- <u>TUNNEL DESIGN</u>: Chief Engineer Tunnel Ventilation Design
- <u>TUNNEL OPERATION:</u> Safety Officer for TERN Tunnels in England
- INDUSTRY:
- Member UK Tunnel Design Authority
- EN Secretary to PIARC Committee
- Co-lead for PIARC WG4 on Ventilation
- Member UK Tunnel Operators' Association

Collaborators

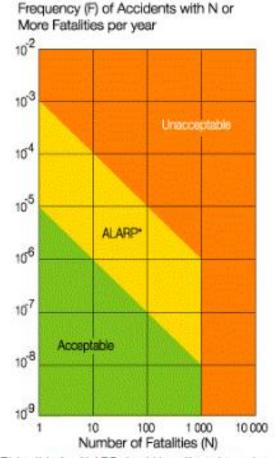
- Peter Sturm, University of Graz, Austria
- Norris Harvey, Mott MacDonald, USA
- Matt Bilson, WSP, USA


- Why are things changing?
 - Air quality NOx levels / AQM
 - Climate change
 - Technological development

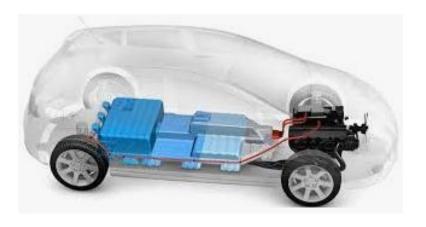
- What's happening?
 - Battery Electrics
 - BEVs in the UK
 up 51% from
 2016 to 2017
 (still only 3% incl.₂₀₁₅


hybrid)

Private fleets (buses) moving to all-electric?



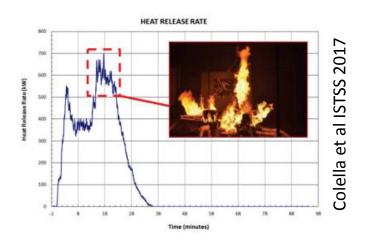
- What's happening?
 - Hydrogen fuel cells
 - High energy density, good for mid to long range
 - Oxidation process with water as only byproduct


- Impacts on tunnel safety risk
 - Likelihood of incidents
 - Per vehicle km of newfuel vehicle
 - Consequences of incidents
 - For tunnel users
 - For firefighters
 - For the tunnel

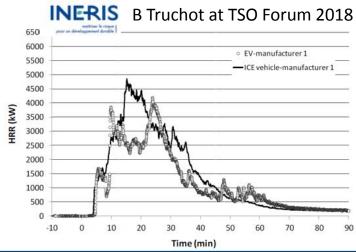
^{*} Risk within the ALARP should be mitigated to as low as reasonably practicable.

(Some basics)

- Electric motor powered by battery pack
- Typically liquid-cooled Liion
- Fire could be caused by:
 - Damage from collision
 - Short circuit
 - Thermal problems during loading



- Thermal runaway
 - Temp increase and chain reaction one cell after another
 - Oxygen is released within the battery to support combustion
 - Suppression is very difficult
- Toxic gases
 - Breakdown of battery components creates large volume of toxic gases
 - Levels of toxicity may be high uncertainty still exists


(Safety Risk)

Heat Release Rate

- Depends on extent of damage
- Peak not significantly different to traditional?

- Toxics
 - During thermal runaway, flammable and highly toxic gases are released from the battery
 - Acids (eg HF), heavy metals as well as standard combustion products
- Does this change our tenability assessments?
- Are smaller car fires to become more of a concern?

(Safety Risk)

- Extinguishing
 - BEV fires are not easily extinguished
 - Oxidation process continues without supply of external oxygen
 - Cooling is required research (eg Colella 2016) reported that up to 10m³ of water to cool the

batteries in a BEV

- High risk of re-ignition
- Which of these is a BEV? or hybrid?

(Some Basics)

- Fuel cells chemically (oxidation) convert H₂ to electric power without burning
- Water is the only emission
- Higher energy density so potential for long ranges
- Fire could be caused by:
 - Damage from collision
 - Thermal problems during loading
- Hazards
 - Fire
 - Explosion

- Prevalence
- Vulnerability
 - Hydrogen burns very hot (2000degC)
 - Fuel tank (H₂) if heated will result in a H₂ release and flame (low energy required for ignition)
 - Rupture of tank unlikely?
 - Battery (bigger than conventional EV)

- HRR
 - Depends on extent of damage
 - Depends on success of controlled venting
 - Peak not significantly different to traditional?

- Toxics same as BEVs
 - Highly toxic gases are released from the battery
 - Acids (eg HF), heavy metals as well as standard combustion products
- Does this change our tenability assessments?
- Are smaller car fires to become more of a concern?

Discussion points

What are our obligations as tunnel designers, owners and operators?

- Acceptable safety levels
 - As % of vehicles increase, are our safety levels reducing?
- Ensure self rescue is possible from BEV incident, H2 incident, whatever the likelihood?
- Ensure PRMs kept safe until fire service arrival?

Discussion points

We have new Scenarios

- New fire and burning behaviours
- Different toxic gases
- Many uncertainties requiring research
- Should we prohibit these vehicles until we are ready for them?
 - Is this even possible?

Discussion points

New Emergency Response

- Identification of vehicles
- Evaluation of risk (dynamic)
- Emergency plans & procedures
- Will the fire service respond to fires of unknown risk?

Concluding comments

Action is needed

- Priority topic for PIARC TC D5 for the coming cycle
- Subject of interest for ITA-COSUF (workshop planned for 2019)
- Collaboration between PIARC and COSUF agreed
- Research is underway more is needed

Some references

ELECTRIC MOBILITY AND ROAD TUNNEL SAFETY HAZARDS OF ELECTRIC VEHICLE FIRES

9th International Conference 'Tunnel Safety and Ventilation' 2018, Graz
1L. D. Mellert, ¹U. Welte, ²M. Hermann, ²M. Kompatscher, ³X. Ponticq.

Fire and explosion hazards of alternative fuel vehicles in tunnels

Ying Zhen Li

Seventh International Symposium on Tunnel Safety and Security, Montréal, Canada, March 16-18, 2016

Electric Vehicle Fires

<u>Francesco Colella</u>¹, Hubert Biteau¹, Nicolas Ponchaut¹, Kevin Marr¹, Vijay Somandepalli¹, Quinn Horn¹, Richard Thomas Long¹

Exponent, USA

Challenges of New Energy Vehicles

B. TRUCHOT and G. MARLAIR
5th Tunnel Safety Officer Forum

ROUTES/ROADS

PIARC September 2018, N Harvey et al

Safety of City Underground Structures due to the use of New Energy Carriers

Thank you for your attention