

Thématique : Limiter les impacts de l'exploitation sur l'environnement

Sobriété énergétique et écoconception des tunnels routiers

IMAGINER CONCEVOIR CONCRÉTISER

ommaire

- . Contexte et objectifs
- . Démarche d'écoconception et méthode ERC
- . Définition des approches Lean-tech et Low-tech
- . Approches complémentaires
- . Recommandations
- . Conclusions et perspectives

Contexte et objectifs

GTFE

Contexte

Contexte

Objectif de la démarche

Une réflexion élargie sur les leviers de sobriété en intégrant :

- toutes les composantes de l'ouvrage (tracé, génie civil, équipements)
- son **usage** (niveau de service yc disponibilité, vitesse admise...)
- toutes les phases de son **cycle de vie** (conception, construction, exploitation-maintenance, GER...)

... qui conduit à :

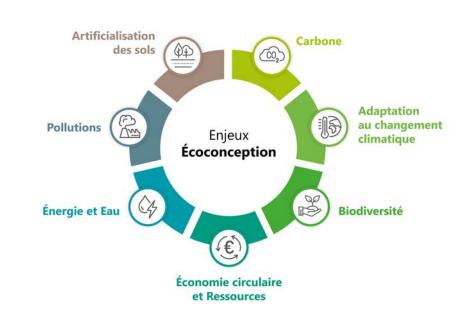
- une **conception** épurée / juste nécessaire / économe (minimise l'empreinte initiale et récurrente)
- des matériels et méthodes de construction vertueux (sourcing des équipements)
- une **exploitation** et une **maintenance** responsable (entretien soigné et optimisé)

Objectif de la démarche

Une analyse du « système tunnel » et des systèmes qui le composent avec différents « outils » / filtres :

- Comment éviter, réduire ou compenser les impacts ?
 - → Méthode E / R / C
- Comment **simplifier** les systèmes ?
 - → Approche Low-Tech / Lean-Tech
- Comment **garantir** la maintenabilité, la disponibilité et l'évolutivité des systèmes ?
 - → Approches FMDS et DfM

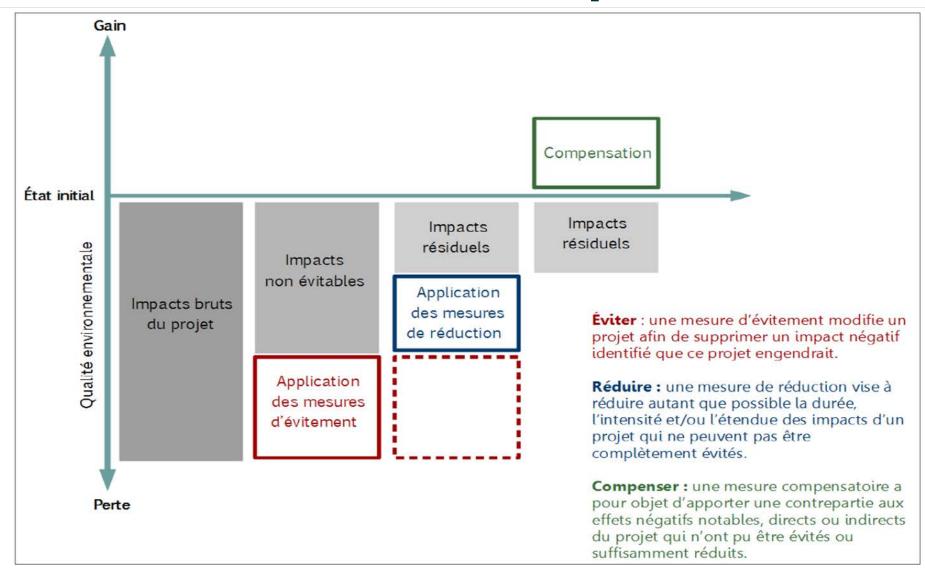
Démarche d'écoconception et méthode ERC



Démarche d'éco-conception

L'approche d'éco-conception doit être volontariste, transversale / globale et longtermiste :

- **Questionner** systématiquement, pour chaque élément du « système tunnel », en génie civil comme en équipements
- **Cibler** tous les systèmes : à la fois les gros consommateurs (occasionnels ou permanents), mais aussi les petits consommateurs permanents
- Analyser les systèmes d'équipements et leurs interactions (entre eux et avec l'infrastructure)
- Prendre en compte toutes les phases du cycle de vie des installations (conception, réalisation, exploitation/maintenance, fin de vie)
- Se baser sur une évaluation des impacts environnementaux du projet, sur chacune des 7 thématiques concernées ->



Méthode ERC : Eviter / Réduire / Compenser

Quelques exemples de mesures d'éco-conception

	Eviter	Réduire	Compenser
Energie et eau	 Privilégier les systèmes passifs (low-tech) Supprimer les redondances superflues et énergivores 	 Adapter le tracé (VID, DAI), le PL (ASS, ECL, INC, SIG, VEN, VID) et le PT (ECL, VEN) Optimiser le rendement des EQTS et réduire les pertes (ASS, INC, HT/BT, ECL) Préférer la ventilation naturelle, puis forcée, à la climatisation des LT Réglage/calibrage des systèmes de gestion de l'éclairage Optimiser les fonctionnels et les temps de fonctionnement (lean-tech) 	Valoriser les eaux d'extrados (réseau séparatif) par exemple pour la défense incendie, la mise en eau des regards siphoïdes ou le rafraichissement des LT
Ressources	Eviter les eqts inutiles ou mal utilisés (DI en tunnel, extinction auto en LT)	 Choix du type de batteries pour ASI Choix du type de câbles Eviter les matériaux corrodables et être vigilant aux couples galvaniques (durabilité ASS, INC, VEN, SIG, ECL) Favoriser le réemploi et la réparabilité des équipements Considérer l'origine des matériaux et matériels 	
Carbone	 Exclure le SF6 des matériels HT Eviter les groupes électrogènes thermiques 	 Choix des fluides caloporteurs pour transformateurs et climatiseurs Privilégier des sources d'énergie renouvelable 	
Pollutions		 Limiter la déclivité pour réduire la pollution des véhicules Choix des peintures et limitation de leur usage 	

Définition des approches Lean-tech et Low-tech

Approches Low-Tech / Lean-Tech

Low-Tech: recours à des solutions technologiquement « sobres » en ressources naturelles et en énergies

Selon l'ADEME, « La démarche low-tech implique un **questionnement du besoin** visant à ne garder que l'essentiel, la réduction de la complexité technologique, l'entretien de ce qui existe plutôt que son remplacement »

Exemple des verrières du tunnel Jenner (Le Havre) pour remplacer l'éclairage de renfort

Approches Low-Tech / Lean-Tech

Lean-Tech: optimisation pour une utilisation « au plus juste » de la technologie

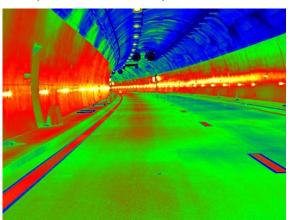
• « Lean » signifie « maigre » → concept synonyme d' « allègement » ou « optimisation »

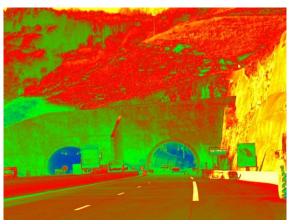
Cette approche peut être :

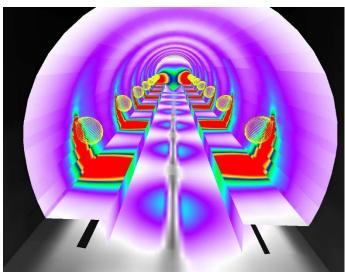
- Globale, à l'échelle de l'ouvrage, pour s'intéresser à des optimisations macroscopiques et transversales Ex : impact du profil en long sur assainissement, réseau incendie, ventilation, consommation des véhicules, etc...
- Ciblée, sur un système technique particulier, voire un équipement, pour en réduire par exemple les consommations Ex : optimisation du fonctionnel ventilation (dimensionnement au plus juste), optimisation des luminances de l'éclairage (au-delà du nombre de luminaires)

Différents principes « Lean » :

- Méthode « 5S » : extrapolable au processus de conception et d'entretien-maintenance
- Réduction des gaspillages : parmi lesquels surproduction, surstockage, transports inutiles, surtraitements, défauts et rebuts
- Maintenance Productive Totale : avec notions de maintenance planifiée et de conception orientée maintenance (voir DfM)






Lean-Tech: optimisation pour une utilisation « au plus juste » de la technologie

Approches Low-Tech / Lean-Tech

Lean-Tech: optimisation pour une utilisation « au plus juste » de la technologie

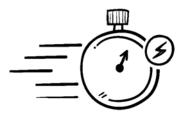
O4 Approches complémentaires

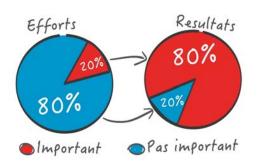
Fiabilité / Maintenabilité / Disponibilité / Sécurité (FMDS)

Design for Maintainability (DfM)

Recommandations

Recommandations




Bien caractériser les consommations en mettant en œuvre des outils de mesure et de suivi suffisamment fins

Procéder à minima aux optimisations les plus simples et rapides

S'intéresser idéalement aux paramètres les plus impactants de chaque système

Traiter en priorité les causes plutôt que leurs effets

Conclusions et perspectives

Conclusion

La démarche d'éco-conception :

- peut-être **complexe** puisqu'elle nécessite un changement de paradigme et oblige à se questionner
- est tout à fait compatible avec les exigences réglementaires de sécurité
- présente des convergences avec les démarches FMDS, DfM ou encore cybersécurité
- n'exclut pas de tirer le meilleur parti des Systèmes de Transport Intelligent (qui pourraient révolutionner les mobilités et contribuer à la sécurité) ou de l'Intelligence Artificielle (permettant une gestion optimisée de certains « process »)
- s'impose pour répondre à l'exigence de **résilience** des infrastructures
- peut contribuer à la **maîtrise des coûts globaux** de construction, d'exploitation et de maintenance
- n'est plus une option pour faire face au **défi climatique** majeur auquel notre planète est soumise

Perspectives

Nos travaux ont permis de lister de nombreux exemples concrets mais...

... les données et le retour d'expérience disponibles ne sont pas suffisants pour quantifier les « écolo-nomies » (énergie, argent, ressources naturelles, matériaux, ...) à réaliser...

... et les doutes sont admis et normaux : il est utile et nécessaire de les partager pour faire avancer la réflexion !

Florent Guiral

Ingénieur – Chef de projet en sécurité/exploitation <u>florent.guiral@egis-group.com</u>

Pôle Tunnels et ouvrages souterrains

Route de la Bouvarde, Park Nord – Bâtiment le Sextant 74370 Épagny-Metz-Tessy FRANCE

www.egis-group.com

